Licking and gaping elicited by microstimulation of the nucleus of the solitary tract.

نویسندگان

  • Nicole R Kinzeler
  • Susan P Travers
چکیده

Intraoral infusions of bitter tastants activate expression of the immediate-early gene c-Fos in neurons located in the medial third of the rostral nucleus of the solitary tract (rNST). The distribution of these neurons is distinct from that activated by sour or sweet stimuli. Bitter stimuli are also distinctive because of their potency for eliciting gaping, an oral reflex that functions to actively reject potentially toxic substances. Glossopharyngeal nerve transection profoundly reduces, whereas decerebration spares, the bitter-evoked Fos-like immunoreactivity (FLI) pattern and gaping, implicating the medial rNST as a substrate for the sensory limb of oral rejection. The present experiment tested this hypothesis using microstimulation (100 Hz, 0.2 ms, 5-40 microA) to activate the rNST in awake rats. NST microstimulation elicited licking and gaping, and gaping was evoked from a restricted rNST region. The results indicated some topographic organization in sites effective for evoking gaping, but, in direct conflict with the hypothesis, lateral sites farther from bitter-evoked FLI were more effective than medial sites centered closer to FLI-expressing neurons. The gape-effective sites resemble locations of bitter-responsive neurons recently observed in neurophysiological recordings. These results indicate that bitter-responsive rNST neurons critical for triggering gaping may not express FLI and imply an alternate function for bitter-responsive neurons that do.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

μ-Opioid modulation in the rostral solitary nucleus and reticular formation alters taste reactivity: evidence for a suppressive effect on consummatory behavior.

The neural control of feeding involves many neuromodulators, including the endogenous opioids that bind μ-opioid receptors (MORs). Injections of the MOR agonist, Damgo, into limbic and hypothalamic forebrain sites increase intake, particularly of palatable foods. Indeed, forebrain Damgo injections increase sucrose-elicited licking but reduce aversive responding (gaping) to quinine, suggesting t...

متن کامل

بررسی اثر آگونیست ها و آنتاگونیست های گیرنده هیستامینی بر رفتار لیس زدن (licking) القا شده توسط آپومرفین در موش صحرایی (Rat)

Background and purpose: Repetitive licking behaviour is a stereotyped phenomenon that is correlated with activation of the nigrostriatal system, and is thought to be produced by activation of both postsynaptic dopamine D1 and D2 receptors. There are good evidences showing that the histaminergic mechanisms may be closely related to dopaminergic systems, and play an important modulatory role in...

متن کامل

Experimentally cross-wired lingual taste nerves can restore normal unconditioned gaping behavior in response to quinine stimulation.

Studies examining the effects of transection and regeneration of the glossopharyngeal (GL) and chorda tympani (CT) nerves on various taste-elicited behaviors in rats have demonstrated that the GL (but not the CT) nerve is essential for the maintenance of both an unconditioned protective reflex (gaping) and the neural activity observed in central gustatory structures in response to lingual appli...

متن کامل

Taste coding in the parabrachial nucleus of the pons in awake, freely licking rats and comparison with the nucleus of the solitary tract.

In the rodent, the parabrachial nucleus of the pons (PbN) receives information about taste directly from the nucleus of the solitary tract (NTS). Here we examined how information about taste quality (sweet, sour, salty, and bitter) is conveyed in the PbN of awake, freely licking rats, with a focus on how this information is transformed from the incoming NTS signals. Awake rats with electrodes i...

متن کامل

Assessing the effect of intra-paragigantocellularis lateralis injection of 17β- estradiol on the acute and persistent pain in the male rat

Introduction: 17β-estradiol modulates nociception by binding to estrogenic receptors and also by allosteric interaction with other membrane-bound receptors like glutamate and GABAA receptors. Beside its autonomic functions, paragigantocellularis lateralis (LPGi) nucleus is also involved in pain modulation. The aim of the current study was to investigate the role of the intracellular estrogen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 295 2  شماره 

صفحات  -

تاریخ انتشار 2008